

Embedded Software Attacks Increasing

2010 - Stuxnet

2012 - 4.5mm DSL Routers hacked in Brazil

2014 - 750k malicious emails sent from

100k consumer gadgets including routers,

televisions and at least one refrigerator

2015 - German Steel Mill Furnace

Damaged

2015 - TrackingPoint Self-aiming Rifles

2015 - Jeep Grand Cherokee

Quick Tip: Test with Limited Privileges

After you have assigned limited privileges

be sure to test your code with the limited

privilege user roles. Developers tend to

test their code with their root access

privileges thereby missing bugs that

occur with limited privileges.

BACKGROUND
The market for embedded systems is growing at a

blistering pace. While consumer electronics,

automobiles and industrial equipment are a major

source of growth, the recent expansion is mainly due

to the growth of the Internet of Things (IoT).

Research site Business Insider estimates that the

number of IoT devices will quadruple in the next 5

years. More importantly, consulting firm IC Insights

expects IoT devices to account for 85% of all

Internet connections worldwide by 2020. It is this

connectivity that makes IoT so exciting but also so

dangerous. IoT has created a path for hackers to

gain access through end user devices into the wider

network. It has exposed vulnerabilities in embedded

systems and increased network attack vectors.

This white paper describes the ten commandments of integrating software security into embedded

systems. These simple rules should be followed by any programmer creating embedded software

and any program manager concerned about the security of their embedded software. This is by no

means a complete list of security techniques. It does not cover concepts like good requirements

documentation, peer reviews and test planning. Rather it focuses on the code and how to build a

foundation for any secure product.

#1 PERFORM THREAT ANALYSIS
The first step in developing a secure embedded system is the performance of a threat analysis. This

analysis looks at the program’s dataflow and makes assumptions of potential security vulnerabilities.

It provides a guide for the tools and methods that must be implemented in order to protect the

system.

In addition to understanding your own system, a threat analysis requires an understanding of widely

used vulnerabilities attacks. One idea is to build a threat library of common attacks which can be

used across the organization. This will reduce the time to market and remove duplicate efforts. This

library can be built from existing resources including the CWE (Common Weakness Enumeration)

and OWASP (Open Web Application Security Project) Top Ten.

Once you have your list of vulnerabilities, group them into easily recognizable areas. One such

method is STRIDE developed by Microsoft. STRIDE stands for Spoofing, Tampering, Repudiation,

Information Disclosure, Denial of Service and Elevation of Privilege.

#2 MINIMIZE USER PRIVILEGES
It is important to consider how qualified users will

interact with the system. After making a list of users

and functionality, ensure that you provide users with

the least amount of privileges they need to perform

their work. By limiting access to special privileges, like

root access, you vastly reduce the attack surface of

your code. Additionally this ensures that there is no

www.telegrid.com

Quick Tip: Signed Integers

Avoid the use of signed

integers for values which

cannot be negative including

memory allocation, array

indexes, buffer sizes, etc.

crossover between domains through functional areas. Unforeseen backdoors are always a target for

attackers.

#3 PICK UNCOMMON PASSWORDS
When selecting factory default passwords for the embedded system pick words other than “admin”,

“password” or “guest”. While this won’t prevent hackers from breaking in, it will definitely slow them

down. Additionally prompt the user to change the password at first log-in. Finally, make sure the

password is encrypted and never kept in the clear.

#4 SEPARATE FUNCTIONALITY
Restrict access between different functions in the code. This will ensure that there will not be a

crossover attack into a sensitive area if a non-sensitive area is compromised. There are many ways

to create this separation including installing embedded hypervisors, limiting the use of shared

memory or ensuring that communications between processes use standard protocols like socket

connections, message queues, etc. TELEGRID has even developed systems with multiple

microprocessors to create a physical separation boundary. If there are communications between

processes it is also important to check the input/ output to make sure it is within expected bounds.

#5 CLEAR MEMORY
After you have released a memory resource make sure to delete the items in that resource. To

increase processing speed, developers tend to release a data register but do not have their code

clear the contents of that register. The assumption is that another trusted source will write over the

contents so there is no security concern. This, however, provides a fertile ground for phishing

attacks. In order to avoid having information fall into the wrong hands be sure to erase memory

space after it has been used.

#6 VALIDATE INPUT AND OUTPUT DATA
Attackers sometimes feed random data into embedded system in

order to cause buffer overflows or other unexpected malfunctions.

One method to test for the existence of random data is known as

“fuzzing”. This, however, is a test tool rather than a development

tool. A cleaner approach is to have your developer create a white

list of validated values or alternatively a black list of non-validated

values. Black listing gives more freedom but requires a robust

knowledge of security vulnerabilities, which is difficult in today’s

world of zero day attacks.

#7 PREVENT BUFFER OVERFLOWS
Buffer Overflows constitute some of the most common embedded software attacks. Protecting

against buffer overflows requires a multipronged strategy. Firstly, it is important to validate the input

to a buffer to make sure it is within bounds of an expected range. A corollary is not letting a user

write to the last element of an array. Secondly, avoid or minimize the use of unsafe buffer functions

including strcpy(), scanf(), gets(), memcpy(), etc.

Finally, ensure your code is optimized for your embedded platform. For instance, attackers know that

embedded systems have limited memory and therefore will try to maximize use of these valuable

resources. If the memory allocator runs out of memory and returns a value your software is not

prepared for (e.g., 0), your software might write to that address and overwrite existing code.

www.telegrid.com

Quick Tip: Bounded Loops

On New Year’s Eve 2008 thousands

of Microsoft Zune music players failed.

The reason was that on the last day of

a leap year, the value of days became

366 which triggered a loop that would

not terminate. This failure could have

been avoided with bounded loops.

#8 USE LOG FILES FOR FORENSIC ANALYSIS
It is good practice to keep audit logs of attack occurrences in order to determine, after the fact, the

nature of the security vulnerability and the best way to prevent it in the future. These logs should,

ideally, be kept separately from monitoring logs which are mainly used for troubleshooting.

#9 PLAN AHEAD FOR PATCHES
It is inevitable that a bug fix or unforeseen security

vulnerability will arise in the future so you must have a

plan for patching embedded software. If, for example,

there is no network connection to the device and the plan

requires physical access, how will you be able access it?

Is there a USB port on the back panel or will it require the

user to physically open the device? What is the plan for

IAVA (Information Assurance Vulnerability Alert) patching?

Is someone in your team tasked with tracking IAVA

releases? Who has that responsibility?

#10 USE THE RIGHT CRYPTO AND PROTOCOLS
Make sure you are using the right cryptographic engine and that your protocols use the most up to

date and secure versions. At a minimum ensure you are using FIPS 140-2 Level 1 certified

encryption for all cryptographic functions. Additionally make sure you employ secure storage,

management and access to encryption keys. Only store keys in secure file storage and only allow

access to keys by secure applications. Securely delete keys when they are no longer needed.

For network communications ensure you use validated standards like TLS and IPSEC. For network

management ensure you use secure protocols like SSH and SNMPv3. For Authentication and

Authorization employ PKI/ PKE with two factor authentication (e.g., CAC/PIV), RADIUS and/or

LDAPS. For Network Access Control employ 802.1x.

CONCLUSION
While resource consumption continues to be the primary focus of embedded system design, the

Internet of Things is forcing developers to add security to the list. Network connectivity has given

attackers the ability to take down networks and damage expensive machines from simple end

devices. The number and size of these attacks has increased in recent years and there is no sign of

decline. Following this list of best practices will help developers recognize the attack vectors of

embedded systems and potential solutions. Test tools and compilers exist to validate the

implementation of many of the coding concepts detailed in this white paper. Additionally firms

unfamiliar with security could hire a consultant to create a threat analysis and mitigation strategy.

Proper coding and planning will limit the access to important functionality and data, however, the best

way to prevent an attack is to stop an intruder accessing your device. This requires the right crypto

and using the right protocols. While there exist both hardware and software-based embedded

security modules, these products focus almost exclusively on encryption. TELEGRID’s Embedded

Security Framework views security as a combination of encryption, authentication and management.

Each is an important facet of embedded security and their mutual application defines the overall

security of a device. TELEGRID’s Embedded Security Framework follows DISA’s Security Technical

Implementation Guides (STIGs) and gives developers a platform to build secure products. For more

information email sales@telegrid.com.

www.telegrid.com

mailto:sales@telegrid.com

